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Section I 

Abstract 

Hearing loss presents a significant communication barrier for a substantial portion of the global 

population, and existing assistive technologies often fall short due to cost, environmental 

limitations, or latency. Visual Speech Recognition (VSR), or lipreading, offers a promising 

alternative, yet current VSR models frequently prioritize accuracy at the expense of real-time 

applicability. This paper introduces LIP-TRAC (Lipreading through a Temporal Recurrent and 

Convolutional network), an advanced, real-time VSR system designed to enhance practical 

communication for individuals with hearing impairments, including those with conditions like 

Aphonia or Aphasia. LIP-TRAC employs a lightweight Convolutional Recurrent Neural 

Network (CRNN) architecture, trained on the BBC LRS2 dataset using a Connectionist Temporal 

Classification (CTC) loss function. The system focuses on optimizing both transcription 

accuracy and inference speed, making it suitable for deployment on resource-constrained devices 

such as the Raspberry Pi 5. Performance is evaluated using standard metrics (Word Error Rate - 

WER, Character Error Rate - CER, Inference Time) and a novel Real-Time Performance Score 

(RTPS) metric, which balances accuracy with speed. Results demonstrate LIP-TRAC's capability 

to achieve WER below 35% and CER below 20% with an average inference time of 

approximately 6.3 seconds per video, outperforming typical human lipreading accuracy and 

offering a practical, accessible solution for enhancing communication. 
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Introduction 

Effective communication is fundamental to human interaction, yet a significant and growing 

portion of the global population faces substantial barriers due to hearing loss. According to the 



World Health Organization (WHO), 1 in 5 people currently live with hearing loss, and it is 

projected that by 2050, over 700 million individuals will experience disabling hearing loss [1]. 

Furthermore, conditions such as Aphonia (loss of voice) and Aphasia (difficulty with speech and 

language comprehension) impose similar communication challenges for millions more. For these 

individuals, visual cues from a speaker's face, particularly lip movements, become crucial for 

understanding speech. This process, known as Visual Speech Recognition (VSR) or lipreading, 

serves as a critical, albeit often challenging, communication tool. 

Human lipreading performance, however, is inherently limited, with accuracy rates rarely 

exceeding 30%, even for experienced individuals [2]. This limitation significantly impacts the 

ability of those with hearing impairments to engage effectively in conversations, especially in 

noisy environments or situations where auditory information is compromised. While traditional 

assistive technologies like hearing aids have made strides in sound amplification and noise 

filtering, they often prove insufficient in complex acoustic settings or for individuals with severe 

to profound hearing loss. Moreover, hearing aids offer little assistance to those with Aphonia or 

Aphasia, who require non-auditory methods to interpret speech. The high cost of many assistive 

devices, with hearing aids averaging over $1000, further restricts accessibility for many.  

Moreover, audio-based Automated Speech Recognition (ASR) systems, despite their 

advancements, have inherent limitations that VSR can address. ASR performance degrades 

substantially in noisy environments (e.g., public spaces, social gatherings) where background 

sounds mask or distort the speech signal. ASR also struggles with the "cocktail party effect," i.e., 

isolating a target speaker amidst multiple simultaneous conversations. Crucially, ASR requires 

audible speech, rendering it ineffective for silent communication scenarios (e.g., libraries, 

confidential meetings) or for individuals who cannot produce audible speech due to conditions 

like Aphonia. VSR, by relying solely on visual information, is immune to acoustic noise and can 

be tailored to focus on a specific speaker's lip movements, offering a pathway for communication 

when audio is unavailable or unreliable. 

The field of automated VSR has emerged as a promising avenue to address these limitations. 

Recent advancements in deep learning have led to VSR models capable of transcribing speech 

from video with increasing accuracy. However, a prevalent trend in current VSR research is the 

prioritization of maximizing transcription accuracy, often at the significant cost of computational 

efficiency and processing. While such models achieve high accuracy metrics (e.g., Word Error 

Rate - WER, Character Error Rate - CER), their high inference times render them impractical for 

real-world, real-time applications where immediate feedback is essential for fluid 

communication. For VSR to be a truly viable assistive tool, it must not only be accurate but also 

operate with minimal latency.  



This project aims to bridge this gap by developing LIP-TRAC (Lipreading through a Temporal 

Recurrent and Convolutional network), an advanced, real-time VSR system. LIP-TRAC is 

designed to learn patterns of lip movements to transcribe speech effectively and efficiently. The 

core contribution of this work lies in the development of a lightweight Convolutional Recurrent 

Neural Network (CRNN) architecture optimized for a balance between accuracy and speed, 

enabling practical deployment on 

accessible hardware like the 

Raspberry Pi. We introduce the 

Real-Time Performance Score 

(RTPS) as a novel metric to 

holistically evaluate VSR systems 

on their suitability for practical, 

real-time use. LIP-TRAC is trained 

and evaluated on the challenging 

BBC LRS2 dataset, which features 

diverse speakers and real-world 

conditions. Our goal is to produce a 

system that not only performs better 

than human lipreaders but also 

offers a tangible improvement in 

accessibility and practical communication for the hearing impaired. 

  

Figure 1. Visual Abstract showing user workflow & 

model creation process. 



Section II 

Related Works 

Visual Speech Recognition (VSR) has been an active area of research for several decades, with 

recent advancements in deep learning significantly propelling the field forward. This section 

reviews key developments in VSR, focusing on model architectures, datasets, and the specific 

challenge of achieving real-time performance. 

Traditional and Early VSR Approaches 

Early attempts at VSR often relied on hand-crafted visual features and traditional machine 

learning models. These methods typically involved explicit feature extraction from the lip region, 

such as geometric features (lip contours, aspect ratios) or appearance-based features (e.g., 

Discrete Cosine Transform - DCT), followed by classification using models like Hidden Markov 

Models (HMMs). While pioneering, these approaches struggled with the variability of visual 

speech due to speaker differences, lighting conditions, and head poses, and their performance 

was generally limited, especially on larger vocabularies or unconstrained speech. 

Deep Learning Architectures for VSR 

The advent of deep learning has revolutionized VSR. Convolutional Neural Networks (CNNs) 

have proven effective for extracting powerful visual features directly from raw pixel data of the 

mouth region, eliminating the need for manual feature engineering (Zhang et al., 2020; Noda et 

al. 2014). Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) 

(Assael et al., 2016; Wand et al, 2016) and Gated Recurrent Units (GRUs), are commonly used 

to model the temporal dynamics inherent in speech. 

Several end-to-end architectures have emerged. LipNet (Assael et al., 2016), a pioneering work, 

demonstrated sentence-level lipreading using a combination of spatiotemporal CNNs (STCNNs), 

RNNs, and the Connectionist Temporal Classification (CTC) loss (Graves et al., 2006). The CTC 

loss is particularly well-suited for sequence-to-sequence tasks like VSR as it handles variable-

length input and output sequences without requiring explicit frame-by-frame alignment between 

video and text. More recent works have explored Transformer-based architectures (Ma et al., 

2023 (AUTO-AVSR), leveraging self-attention mechanisms to capture long-range dependencies 

in visual speech sequences, often achieving state-of-the-art (SOTA) results (Afouras et al., 2019 

(Deep Audio-visual Speech Recognition). Some approaches also investigate multi-modal fusion, 

combining visual information with audio for improved robustness, particularly in noisy ASR (Ma 

et al., 2023 (AUTO-AVSR); Afouras et al., 2019). Other research has focused on specific 

architectural improvements, such as different CNN backbones or feature fusion techniques (Jeon 

et al., 2022). 

Datasets in VSR  

The development of large-scale VSR datasets has been crucial for training deep learning models. 

Early datasets were often limited in size and vocabulary (e.g., GRID corpus (Cooke et al. 2006)) 



More recent datasets, such as LRW (Lip Reading in the Wild) (Chung & Zisserman, 2016a ) and 

the LRS2 (Lip Reading Sentences 2) dataset (Chung et al, 2017) provide thousands of videos 

from diverse speakers in unconstrained "in-the-wild" conditions. The LRS2 dataset, used in this 

work, is particularly valuable for its natural sentences and realistic recording environments, 

making it suitable for developing practical VSR systems. 

Real-Time Performance and Model Efficiency in VSR 

While the primary focus of many VSR studies has been on maximizing transcription accuracy 

(e.g., minimizing WER and CER), the practical deployment of VSR as an assistive technology 

necessitates real-time performance and model efficiency. Highly accurate models often employ 

large, computationally intensive architectures (e.g., deep Transformers) that result in high 

inference latency, making them unsuitable for interactive communication. There is a recognized 

trade-off between model complexity (and thus accuracy) and inference speed. Some studies have 

explored model distillation or lightweight architectures for lipreading (Ma et al., 2021), but a 

dedicated focus on balancing these aspects for devices like a Raspberry Pi, along with a metric to 

quantify this balance, remains less explored. Zhang et al. (2020) also touch upon the importance 

of Region of Interest (RoI) selection, which can impact computational load and model focus, but 

their work primarily investigates the utility of extra oral features rather than model efficiency for 

real-time systems. 

Positioning LIP-TRAC 

LIP-TRAC builds upon the foundational principles of end-to-end VSR, particularly the use of 

CRNNs and CTC loss, similar to early successful models like LipNet (Assael et al., 2016). 

However, LIP-TRAC distinguishes itself by its explicit focus on developing a lightweight and 

efficient model architecture tailored for real-time transcription on resource-constrained hardware. 

While SOTA models often push the boundaries of accuracy with larger networks, LIP-TRAC 

prioritizes a practical balance between accuracy and low inference latency. This is further 

emphasized by the introduction of the Real-Time Performance Score (RTPS) metric, which 

directly evaluates this balance, addressing a critical need for the development of truly usable 

VSR assistive technologies. The system is designed for practical deployment, aiming to perform 

robustly on diverse, real-world data as represented by the LRS2 dataset. 

  



Section III 

 

Methodology 

This section details the LIP-TRAC system, encompassing the dataset utilized, the data 

preprocessing pipeline, the model architecture, training procedures, and the evaluation metrics 

employed, including the novel Real-Time Performance Score (RTPS). 

Dataset 

The primary dataset used for training and evaluating LIP-TRAC is the BBC Lip Reading 

Sentences 2 (LRS2) dataset (Chung et al., 2017).  LRS2 consists of thousands of spoken 

sentences extracted from diverse British television programs. It is characterized by a wide 

variation in speakers, accents, head poses, lighting conditions, and backgrounds, making it a 

challenging and realistic benchmark for "in-the-wild" VSR. The dataset provides video clips of 

speakers along with corresponding ground-truth text transcriptions. For this work, 683 videos for 

training and 456 for testing, as indicated in our experiment based on the size of the dataset and 

the resources available to train the model.   

Data Processing 

A robust preprocessing pipeline is essential for preparing the raw video data for model training. 

This pipeline involves lip region extraction, frame normalization, and text encoding. 

Lip Region Extraction 

The first step is to isolate the mouth region, which contains the most salient visual 

information for lipreading. 

1. Face Detection: For each frame in a video, a Haar Cascade classifier (specifically, 

haarcascade_frontalface_default.xml) is employed to detect the frontal face region  

2. Mouth Region Cropping: From the detected face, the mouth region is cropped. The 

coordinates for cropping are determined relative to the detected face bounding box, 

focusing on the lower portion of the face where lip movements are most prominent. For 

Figure 2. Simplified Methodology Visual Diagram  



efficient cropping of the mouth region, relative cropping was used. This entailed cropping 

the region from 65% of the face height downwards, and horizontally between 5% and 

95% of the face width, to isolate the lips and surrounding area. If a face is not detected in 

a frame, the crop from the last known successful detection is used.  

 

Frame Preparation and Normalization 

Once the mouth region is cropped, further processing is applied: 

1. Resizing: The cropped mouth 

region is resized to a fixed 

dimension of 40x120 pixels. This 

aspect ratio was chosen due to the 

rough proportions of the lip region, 

and the resolution was scaled down 

due to the available processing 

power.  

2. Gray scaling: The resized color 

frames are converted to grayscale to reduce computational complexity and focus on 

luminance changes, which are critical for discerning lip shapes. This final 

transformation can be seen in Figure 3.  

3. Normalization: To account for variations in lighting and speaker appearance, each 

video sequence is normalized. For each video, the mean pixel value across all its 

frames is calculated. Then, for each frame, this mean is subtracted, and the result is 

divided by the standard deviation of pixel values across all frames in that video. This 

results in frames representing deviations from the video's average frame, enhancing 

the visibility of dynamic lip movements. This local deviation is what is input into the 

model, as compared to the raw frame. This ensures only the important information 

about what is changing over time (lip movements) is what the model is trained on.   

Text Data Processing 

The corresponding text transcriptions are processed as follows: 

1. Cleaning: Video transcriptions (text data) are cleaned. Words are extracted; numeric 

words like "5" are converted to their word form like "FIVE".  

2. Tokenization & Encoding: The cleaned transcriptions are tokenized into sequences 

of characters. A vocabulary (vocab) consisting of uppercase English letters (A-Z) and 

a space character is defined. Each character is then mapped to a unique numerical 

representation using character-to-integer mapping. The maximum character length for 

transcriptions is padded to 145. 

                               
                            

           

                      
           

          

    
       

                                                     

Figure 3. Resized and gray scaled mouth 

region (40x120 pixel) 



Model Architecture 

LIP-TRAC employs a lightweight Convolutional Recurrent Neural Network (CRNN) 

architecture designed for efficient real-time visual speech recognition. The model takes a 

sequence of preprocessed grayscale mouth region frames as input and outputs a sequence of 

character probabilities. 

1. Convolutional Layers (Visual Feature Extraction): The initial layers of the model 

consist of a stack of 3D Convolutional (Conv3D) layers. These layers are responsible for 

learning spatiotemporal features from the input video frames. 

• The Conv3D layers use 3x3x3 kernels and ReLU activation functions. 

• Max Pooling 3D layers (1,2,2) are interspersed to progressively reduce the spatial 

dimensions while retaining temporal information and important features. 

• The output of these convolutional blocks is a sequence of feature maps 

representing learned visual cues of lip movements over time. 

 

2. Recurrent Layers (Temporal Modeling): The feature sequences from the convolutional 

layers are then fed into Bidirectional Gated Recurrent Unit (GRU) layers. 

• Bidirectional GRUs process the sequence in both forward and backward 

directions, allowing the model to capture contextual information from past and 

future frames for each timestep. 

• Dropout layers are used after the GRU layers to prevent overfitting. 

• These layers model the temporal dependencies between the extracted visual 

features, crucial for understanding the dynamics of speech. 

3. Output Layer and CTC Loss: 

• The output from the recurrent layers is passed through a Time Distributed Flatten 

layer and then a final Dense layer with a SoftMax activation function. This layer 

outputs a probability distribution over the character vocabulary (including a blank 

token) for each time step in the input sequence. 

• The model is trained using the Connectionist Temporal Classification (CTC) 

loss function (Graves et al., 2006). CTC loss is highly effective for sequence-to-

sequence tasks like VSR because it allows the 

network to be trained without requiring explicit 

alignment between the input video frames and 

the output character sequence. It sums over the 

probabilities of all possible alignments that 

𝐿 = −∑ log𝑃(𝑠𝑒𝑞𝑡,𝑡)

𝑇−1

𝑡=0

 

Figure 4. CTC Loss function  



could yield the target transcription, effectively handling the variable speaking 

rates and coarticulation inherent in speech. 

The overall LIP-TRAC model architecture 

is summarized in Figure 5.  

1. 3D Convolution   

2. 3D Max Pooling     

3. 3D Convolution  

4. 3D Max Pooling 

5. 3D Convolution  

6. 3D Max Pooling 

7. Time Distributed  

8. Bidirectional GRU  

9. Dropout  

10. Bidirectional GRU  

11. Dropout  

12. Dense  

 

Training and Optimization 

The LIP-TRAC model was trained using the Adam optimizer with the CTC loss function. 

• Hardware: Training was performed on an NVIDIA RTX 3060 Ti GPU. 

• Hyperparameters: 

o The learning rate was subject to a scheduler, starting at a 0.000003 value and with an 

exponential decay over epochs to facilitate convergence.   

o Batch size was set to 1 due to the variable length of video sequences and memory 

constraints for 3D convolutions.  

• Training Duration: The model was trained for up to 300 epochs, with checkpoints saved 

periodically. The training loss was observed to decrease significantly and stabilize, indicating 

model convergence.  

• Optimization Techniques: Dropout (0.5) was used in the recurrent layers to mitigate 

overfitting. 

Deployment and Evaluation Metrics 

A key objective of LIP-TRAC is its suitability for practical, real-time applications. 

                          
                 
                   

    

                
        

                         
                               

                              
                    
                                
                
                                 
                
                                      
                    
          
                                       
           
                       

Figure 5. Final Model Architecture & Training 

Machine Specifications  



• Deployment: The trained model is saved in a lightweight format and designed for 

deployment on devices like a Raspberry Pi 5, demonstrating its potential for accessible 

assistive technology  

• Standard Evaluation Metrics: 

o Word Error Rate (WER): The Levenshtein distance between the predicted and 

ground-truth word sequences, normalized by the number of words in the ground 

truth. Lower is better. 

o Character Error Rate (CER): Similar to WER but calculated at the character 

level. Lower is better. 

o Inference Time: The time taken by the model to transcribe a given video 

segment. Real time is defined as Inference Time less than 10 seconds.  

• Novel Metric - Real-Time Performance Score (RTPS): 

To holistically evaluate the practical utility of VSR systems, we introduce the RTPS. This 

metric is designed to balance transcription accuracy with processing speed, which are 

both critical for real-time usability. RTPS is defined as: 

RTPS = (1 - WER) / Inference Time 

A higher RTPS indicates a better trade-off between accuracy and speed, favoring models 

that are both accurate and fast, making them more suitable for real-world applications. 

This metric addresses the limitation of existing studies that often focus solely on accuracy 

without adequately considering real-time constraints.  

Baselines for Comparison 

To evaluate the performance of LIP-TRAC, it is compared against: 

• Current State-of-the-Art (SOTA) Lipreading Models: Performance metrics from 

published SOTA VSR models trained on similar datasets (like LRS2) are used for 

comparison where available.  

• Human Lipreading Performance: As a general benchmark, human lipreading accuracy 

is typically reported to be around 30% under optimal conditions, and often lower in 

practice.  

 

  



Section IV 

Experiments and Results 

This section details the experimental setup, presents the performance of the LIP-TRAC system 

on the LRS2 dataset, and provides a comparative analysis against baseline models and human 

lipreading capabilities. 

Experimental Setup 

• Dataset and Split: All experiments were conducted on the BBC Lip Reading Sentences 

2 (LRS2) dataset (Chung et al., 2017). Following the preprocessing steps detailed in 

Section 3.2, the dataset was divided into a training set of 683 videos and a test set of 456 

videos. The data was shuffled before splitting. 

•  Evaluation Metrics: The primary metrics used for evaluation are Word Error Rate 

(WER), Character Error Rate (CER), Inference Time, and the proposed Real-Time 

Performance Score (RTPS), as defined in Section 3.5. 

• Baselines: 

o State-of-the-Art (SOTA) VSR Models: Performance of LIP-TRAC is compared 

to published results from other VSR models on the LRS2 dataset where available. 

These serve as benchmarks for accuracy and, where reported, inference speed. 

o Human Lipreading Performance: The typical accuracy of human lipreaders 

(around 30% (Assael et al., 2016)) is considered a general reference point. 

• Implementation Details: The LIP-TRAC model, as described in Section 3.3, was 

implemented using TensorFlow and Keras. Training was performed on an NVIDIA RTX 

3060 Ti GPU with an initial learning rate of 0.000003 using the Adam optimizer and a 

learning rate scheduler. The model was trained for up to 300 epochs. 

Performance of LIP-TRAC 

The LIP-TRAC system was evaluated on the LRS2 

test set. 

• Training Progression: 

o The training process showed a 

consistent decrease in CTC loss over 

epochs, stabilizing as the model 

converged, indicating effective 

learning. Figure 6 illustrates the 

training and validation loss curves, Figure 6. Training and validation 

loss curve 



showing a decrease from an initial CTC loss of approximately, ~210 to a stable 

value around stable loss of ~27. 

o Word-level and character-level accuracies on the validation set improved steadily 

during training as can be shown in Figure 7 and 8. Figure 7 is initially low while 

Figure 8 is increasing, because all characters of a word must be correct before the 

word is classified as correct.  

 

• Quantitative Results on LRS2 Test Set: 

o LIP-TRAC achieved a Word Error Rate (WER) of 32.7% and a Character 

Error Rate (CER) of 14% on the LRS2 test set. 

o The average Inference Time per video (of varying lengths) was approximately 

6.3 seconds when deployed on the Raspberry Pi 5. 

o Based on these, the Real-Time Performance Score (RTPS) for LIP-TRAC is 

calculated as: 

RTPS = (1 - .327]) / 6.3 seconds = 0.1068 

 

 

 

 

 

 

 

Figure 7. Word Level Accuracy over time  Figure 8. Character Level Accuracy over time  



 

Comparative Analysis 

• Comparison with SOTA Models: 

o LIP-TRAC's performance was compared against existing VSR models reported in 

the literature for the LRS2 dataset.  

Model / Study RTPS 
LIPTRAC 0.10683 

(J. S. Chung et al., 2017) 0.07564 
(J. Yu et al., 2020) 0.06938 
(S. Ren et al.,2021) 0.06156 
(P. Ma et al.,2023) 0.04482 
(P. Ma et al.,2022) 0.03735 

(K. Prajwal et al., 2022) 0.01794 
 

 

 

 

 

 

 

 

o LIP-TRAC achieved a WER of 32.7% which is comparable to SOTA models at 

around 28%.  

o Importantly, LIP-TRAC achieves this with a significantly lower inference time of 

6.3 seconds, resulting in a favorable RTPS of 0.10683. Many SOTA models, while 

achieving high accuracy, do not report inference times or are designed with large 

architectures that are less suitable for real-time deployment.  

• Comparison with Human Lipreading: 

          
          

          

     

    

     

     

     

     

     

     

     

     

         
         

              
          

                
         

              
     

          
         

               
          

 
  
  
  
  
   
  
  
  
  
  
   
  
  
  
  

             

                                                         

Figure 9.  RTPS scores of various 

models  Figure 10.  Word Accuracy compared to Existing Models   

Figure 11. Inference Time compared 

to Existing Models   



o Human performance is generally around 30% accuracy, or 70% Word Error Rate, 

as compared to the 32.7% Word Error Rate of LIP-TRAC, which demonstrates a 

substantial improvement in transcription capability over unassisted human 

lipreading. 

Real-World Trials and Generalization 

To assess LIP-TRAC's practical utility and generalization capabilities, further trials were 

conducted beyond the standard LRS2 test set, as detailed in the Visual Abstract. 

• Performance on Custom Sentences and New Speakers: 

o LIP-TRAC was tested on new, unseen sentences and with speakers not present in 

the LRS2 training set. In this case, 

LIP-TRAC generally maintained a 

This demonstrates the model's ability 

to generalize to some extent to novel 

linguistic content and speaker 

characteristics. The averages of these 

new trials were correlated with the 

values found earlier, only within 

~5%.  

• Deployment on Raspberry Pi 5: 

o The successful deployment and testing on a Raspberry Pi 5 (as shown in Figure 

12) underscores the lightweight nature of LIP-TRAC and its feasibility for use in 

resource-constrained, accessible hardware setups. The inference times reported 

above were achieved on this platform. 

Qualitative Analysis and Error Types 

• Common Error Types: 

o Analysis of incorrect transcriptions revealed common error patterns. A frequent 

error type was the omission or misrecognition of repeated characters (e.g., 

transcribing "hello" as "helo"). This observation is consistent with the nature of 

CTC loss, which collapses repeated labels. While this impacts character-level 

metrics, semantic understanding at the word level is often preserved. 

 

  

Word Level Acc. Character Level Acc.
Phrase 1 61.2% 89.1%
Phrase 2 83.5% 94.0%
Phrase 3 59.7% 67.8%
Phrase 4 67.8% 92.3%
Phrase 5 56.6% 74.5%
Average 65.8% 83.5%

Figure 12. Results of Real-World Trials of  

LIP-TRAC  



Section V 

Discussion  

Interpretation of Results and Engineering Criteria 

LIP-TRAC was designed with specific engineering criteria in mind: versatility, functionality, and 

accuracy. 

• Versatility: The model was trained on the LRS2 dataset, which features a wide variety of 

speakers. The successful real-world trials on new speakers (Figure 12) suggest that LIP-

TRAC has achieved a degree of speaker independence, enabling it to generalize 

reasonably well to unseen individuals. This is a critical aspect of a practical assistive tool. 

• Functionality: The core functionality aimed for was real-time transcription of complex 

lip movements. LIP-TRAC's ability to process video and output text with an average 

inference time of approximately 6.3 seconds on a Raspberry Pi 5 demonstrates its 

potential for near real-time interaction. While sub-second latency would be ideal for 

seamless conversation, this performance is a significant step towards practical usability 

on accessible hardware. The system effectively learns complex patterns of lip movements 

using its CRNN architecture and CTC loss, as evidenced by the decreasing training loss 

and improving accuracy metrics (Figure 6, Figure 7, Figure 8). 

• Accuracy: LIP-TRAC achieved a Word Error Rate (WER) of 32.7% and a Character 

Error Rate (CER) of 14% on the LRS2 test set. These results meet the predefined 

accuracy targets of <35% WER and <20% CER. This level of accuracy, while not perfect, 

significantly surpasses typical unassisted human lipreading performance (around 70% 

WER / 30% accuracy), indicating its potential to genuinely aid comprehension. The error 

analysis showing common errors like omitted repeated characters is typical for CTC-

based models and often does not severely impede overall understanding. 

Significance of Findings and Contributions 

The development and evaluation of LIP-TRAC offer several significant contributions: 

• Practical Real-Time VSR: LIP-TRAC demonstrates the feasibility of a VSR system that 

balances accuracy with real-time performance on resource-constrained hardware. This is 

a crucial step towards making VSR a practical assistive technology, rather than a purely 

academic pursuit focused solely on benchmark scores. 

• Real-Time Performance Score (RTPS): The introduction and application of the RTPS 

metric provide a more holistic way to evaluate VSR systems for practical deployment. By 

considering both accuracy (1-WER) and inference time, RTPS highlights LIP-TRAC's 

favorable balance compared to models that might achieve slightly higher accuracy but 

with prohibitive latency (Figure 9, Figure 10, Figure 11). This encourages a shift in VSR 

research towards optimizing real-world usability. 



• Accessibility: By designing a lightweight model deployable on a low-cost platform like 

the Raspberry Pi 5, LIP-TRAC has the potential to be a more accessible solution 

compared to expensive, proprietary assistive devices or systems requiring high-end 

computational resources. This directly addresses the cost barrier mentioned in the 

Introduction. 

• Aid for Diverse Communication Needs: LIP-TRAC's visual-only approach makes it 

suitable not only for individuals with hearing loss but also for those with Aphonia or 

Aphasia, and for communication in noisy or silent environments where ASR systems fail. 

Comparison to Human Performance and SOTA 

LIP-TRAC's WER of 32.7% clearly outperforms average human lipreading capabilities. This is a 

key indicator of its potential as an effective assistive tool. When compared to other SOTA VSR 

models (Figures, 9, 10, 11), LIP-TRAC offers a competitive balance. While some larger models 

may report marginally lower WERs, LIP-TRAC's strength lies in its significantly lower inference 

time and, consequently, a strong RTPS, making it more practical for interactive use. 

Technical and Non-Technical Impact 

• Technical Impact: This study introduces a lightweight CRNN architecture optimized for 

real-time VSR. The methodology for data preprocessing and training with CTC loss on 

the LRS2 dataset provides a replicable framework. The successful deployment on a 

Raspberry Pi 5 serves as a proof-of-concept for edge-computing VSR applications. LIP-

TRAC can also serve as a foundation for future multi-speaker VSR models or for 

integration into more complex audio-visual systems. 

• Non-Technical Impact: The primary non-technical impact is the potential to enhance the 

communication abilities and improve the quality of life for millions of individuals with 

hearing or speech impairments. It can foster greater independence and social inclusion. 

Furthermore, this work highlights the important trade-off between speed and accuracy in 

developing assistive AI, encouraging solutions that are not just theoretically optimal but 

practically beneficial. 

Limitations 

Despite the promising results, this study has several limitations: 

• Dataset Specificity: LIP-TRAC was trained and primarily evaluated on the LRS2 

dataset, which, while diverse, consists of British English speakers. Performance in other 

languages, accents, or significantly different visual conditions (e.g., very low lighting, 

extreme poses not well-represented in LRS2) may vary. 

• Visual-Only Modality: LIP-TRAC is a purely visual system. While advantageous in 

noisy or silent conditions, it does not leverage potentially complementary audio 



information that could improve accuracy in situations where some clean audio is 

available. 

• CTC Loss Characteristics: As noted, CTC loss can lead to errors like omitted repeated 

characters. While often not detrimental to overall understanding, it can affect verbatim 

transcription accuracy. 

• Real-Time Definition: While an average inference of ~6.3 seconds is a significant 

improvement towards real-time use, true conversational fluency might require even lower 

latencies. 

• Hardware Constraints: Performance is tied to the capabilities of the deployment 

hardware (Raspberry Pi 5). More complex real-world scenarios might demand more 

processing power than available on such devices if further model enhancements are made 

without maintaining efficiency. 

  



Section VI 

This paper introduced LIP-TRAC, a lightweight, real-time Visual Speech Recognition system 

designed to address the communication challenges faced by individuals with hearing and speech 

impairments. By employing a Convolutional Recurrent Neural Network (CRNN) architecture 

trained with Connectionist Temporal Classification (CTC) loss on the LRS2 dataset, LIP-TRAC 

achieves a practical balance between transcription accuracy and inference speed. 

The system successfully met its engineering goals, demonstrating versatility across speakers, 

functional real-time transcription capabilities, and accuracy levels (WER of 32.7%, CER of 

14%) that surpass typical human lipreading performance. The introduction of the Real-Time 

Performance Score (RTPS) provides a valuable metric for evaluating VSR systems in terms of 

their practical usability. LIP-TRAC's strong RTPS (0.10683). and successful deployment on a 

Raspberry Pi 5 highlights its potential as an accessible and effective assistive communication 

tool. 

The key contributions of this work include the development of an efficient CRNN model for 

VSR, the emphasis on and quantification of real-time performance, and a demonstration of a 

VSR system with significant potential to improve accessibility for individuals reliant on visual 

communication. While limitations exist, particularly regarding dataset specificity and the 

inherent characteristics of a visual-only system, LIP-TRAC represents a meaningful 

advancement towards practical and deployable lipreading technology. Future work will focus on 

addressing these limitations and further enhancing the system's robustness and real-world 

applicability. 
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